Lees CSV bestand
# Import pandas (if no module named pandas -> pip install pandas)
import pandas as pd
# Read csv file
sensor_data = pd.read_csv("iwast.csv")
# Show the first 5 entries
print(sensor_data.head(5))
Result:
Sensor ID Motherboard ID Motherboard Name ... value timestamp unit
0 2 2 Marge ... 20.939999999999998 2020-01-22T15:34:48.000Z °C
1 2 2 Marge ... 1035 2020-01-22T15:34:48.000Z hPa
2 2 2 Marge ... 418 2020-01-22T15:34:48.000Z -
3 2 2 Marge ... 35.62 2020-01-22T15:34:48.000Z %
4 2 2 Marge ... 20.950000000000003 2020-01-22T15:35:51.000Z °C
[5 rows x 7 columns]
Filter data
# replacing blank spaces with '_' because programming language do not like blank spaces!
sensor_data.columns =[column.replace(" ", "_") for column in sensor_data.columns]
print(sensor_data.head(5))
# filter out data so we only keep the sensor dat coming from motherboard Marge with metric Temperature
marge_data = sensor_data.query('Motherboard_Name == "Marge" and metric=="Temperature"')
print(marge_data.head(5))
Results:
Sensor_ID Motherboard_ID Motherboard_Name ... value timestamp unit
0 2 2 Marge ... 20.939999999999998 2020-01-22T15:34:48.000Z °C
1 2 2 Marge ... 1035 2020-01-22T15:34:48.000Z hPa
2 2 2 Marge ... 418 2020-01-22T15:34:48.000Z -
3 2 2 Marge ... 35.62 2020-01-22T15:34:48.000Z %
4 2 2 Marge ... 20.950000000000003 2020-01-22T15:35:51.000Z °C
[5 rows x 7 columns]
Sensor_ID Motherboard_ID Motherboard_Name metric value timestamp unit
0 2 2 Marge Temperature 20.939999999999998 2020-01-22T15:34:48.000Z °C
4 2 2 Marge Temperature 20.950000000000003 2020-01-22T15:35:51.000Z °C
8 2 2 Marge Temperature 20.939999999999998 2020-01-22T15:36:51.000Z °C
12 2 2 Marge Temperature 20.939999999999998 2020-01-22T15:37:59.000Z °C
16 2 2 Marge Temperature 20.939999999999998 2020-01-22T15:38:55.000Z °C
Plot sensordata
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
# convert raw timestamps to datetime that pandas can understand
# raw: 2020-01-22T15:34:48.000Z
marge_data['timestamp'] = pd.to_datetime(marge_data['timestamp'])
# ensure the values are interpreted as floats
marge_data["value"] = marge_data["value"].astype(float)
# plot the temperature data and group based on the sensor_ID
ax = sns.scatterplot(x="timestamp", y="value", hue="Sensor_ID", data=marge_data)
plt.show()
Bereken de Air Quality Index
# Import pandas (if no module named pandas -> pip install pandas)
import pandas as pd
import os
# ensure we are in the same path as our Python code
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
# Read csv file
sensor_data = pd.read_csv("iwast-aqi.csv")
# replacing blank spaces with '_' because programmisng language do not like blank spaces!
sensor_data.columns =[column.replace(" ", "_") for column in sensor_data.columns]
sensor_data['timestamp'] = pd.to_datetime(sensor_data['timestamp'])
print(sensor_data.head(5))
# get out the temperature and humidity data
sensor_data_temp = sensor_data.query('metric=="Temperature"')
sensor_data_humidity = sensor_data.query('metric=="Humidity"')
# Merge the two dataframes based on their timestamp
sensor_data_merged = pd.merge_asof(left=sensor_data_humidity, right=sensor_data_temp, on='timestamp', by="Motherboard_Name", direction="nearest", suffixes=("_humidity", "_temp"))
print(sensor_data_merged.head(5))
def compute_aqi(row):
dataTemperature = row["value_temp"]*100
dataHumidity = row["value_humidity"]*1000
if ((dataTemperature) >= 2100):
AQI_temp = ((50*(dataTemperature - 2100.0)/29)+50)/100
else:
AQI_temp = ((50*(2100.0 - dataTemperature)/41)+50)/100
if ((dataHumidity) >= 40000):
AQI_hum = ((5*(dataHumidity - 40000.0)/6)+500)/1000
else:
AQI_hum = ((5*(40000.0 - dataHumidity)/4)+500)/1000
return AQI_temp + AQI_hum
# Use the function "compute_aqi" to compute the AQI per row with the definiation above
sensor_data_merged["AQI"] = sensor_data_merged.apply(compute_aqi, axis=1)
print(sensor_data_merged.head(5))
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
ax = sns.lineplot(x="timestamp", y="AQI", hue="Motherboard_Name", data=sensor_data_merged)
plt.show()